**Chapter 1 : Introduction to Control Systems** 

Force - Current Analogy.....2-17

|                                                                                                          |                                                                                    | 2.11.3                                                                                                   | Advantages of Analogous Systems                 | 2-1                                       |
|----------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|-------------------------------------------------|-------------------------------------------|
| 1                                                                                                        | Introduction1-1                                                                    | 2.12                                                                                                     | Representation by Nodal Method                  | 2-1                                       |
| 2                                                                                                        | Important Definitions1-1                                                           | 2.13                                                                                                     | Solved Examples on Mathematical Modeli          | ing2-1                                    |
| 3                                                                                                        | Open Loop System1-2                                                                | 2.14                                                                                                     | Armature Controlled D.C. Motor                  | 2-2                                       |
| 3.1                                                                                                      | Open Loop Examples1-2                                                              |                                                                                                          |                                                 |                                           |
| 3.2                                                                                                      | Advantages and Disadvantages of                                                    | Chapte                                                                                                   | r 3 : Block Diagram Representatio               | n 3-1 to 3-3                              |
|                                                                                                          | Open Loop Systems1-3                                                               |                                                                                                          | Introduction                                    |                                           |
| .4                                                                                                       | Closed Loop System1-3                                                              | 3.1                                                                                                      | How to Draw a Block Diagram ?                   |                                           |
| .4.1                                                                                                     | Closed Loop Examples1-3                                                            | 3.1.1                                                                                                    | Block Diagram Definitions                       |                                           |
| .4.2                                                                                                     | Advantages and Disadvantages of                                                    | 3.3                                                                                                      | Generating a Block Diagram from a               |                                           |
|                                                                                                          | Closed Loop System1-5                                                              | 3.3                                                                                                      | Physical System                                 | 3-                                        |
| .5                                                                                                       | How Does One Convert an Open Loop                                                  | 3.4                                                                                                      | Block Diagram Reduction                         |                                           |
|                                                                                                          | System to a Closed Loop System ?1-5                                                | 3.4.1                                                                                                    | Derivation of Closed Loop (Feedback)            |                                           |
| .5.1                                                                                                     | Comparison of Open and Closed Loop Systems1-6                                      |                                                                                                          | Transfer Function                               | 3-                                        |
| 6                                                                                                        | Servo Mechanisms1-6                                                                | 3.4.2                                                                                                    | Advantages of Block Diagram Reduction           | 3-                                        |
| 6.1                                                                                                      | Requirements of a Good Control System1-6                                           | 3.4.3                                                                                                    | Disadvantages of Block Diagram Reduction        | on3-                                      |
| 7                                                                                                        | Feed Forward Systems1-7                                                            | 3.5                                                                                                      | Rules for Block Diagram Reduction               | 3-                                        |
| 8                                                                                                        | Adaptive Control Systems1-7                                                        | 3.6                                                                                                      | Solved Examples                                 | 3-                                        |
| 9                                                                                                        | Solved Examples1-8                                                                 |                                                                                                          |                                                 |                                           |
|                                                                                                          | The Design Process1-10                                                             |                                                                                                          | r 4 : Signal Flow Graph                         | 4-1 to 4-2                                |
| .10                                                                                                      | The Design Flocess 10                                                              | Chapter                                                                                                  | i 4. Sigilai Flow Grapii                        |                                           |
|                                                                                                          | Linear System1-10                                                                  | Chapter 4.1                                                                                              | Introduction                                    | 4-                                        |
|                                                                                                          | 3                                                                                  |                                                                                                          |                                                 |                                           |
| .10.1                                                                                                    | Linear System1-10                                                                  | 4.1                                                                                                      | Introduction                                    | 4-                                        |
| .10.1                                                                                                    | Linear System1-10                                                                  | 4.1 4.1.1                                                                                                | Introduction  How to Draw a Signal Flow Graph ? | 4-<br>ons4-                               |
| .10.1<br>Chapte                                                                                          | Linear System1-10                                                                  | 4.1<br>4.1.1<br>4.2                                                                                      | Introduction                                    | 4-<br>ons4-<br>ns4-                       |
| .10.1<br>Chapte                                                                                          | Linear System1-10  er 2: Transfer Function and Mathematical  Modelling 2-1 to 2-26 | 4.1<br>4.1.1<br>4.2<br>4.3                                                                               | Introduction                                    | 4- ons4- s4-                              |
| 10<br>10.1<br>Chapte                                                                                     | Linear System                                                                      | 4.1<br>4.1.1<br>4.2<br>4.3<br>4.4                                                                        | Introduction                                    | 4- ons4- is4- 4- 4-                       |
| .10.1<br>Chapte                                                                                          | Linear System                                                                      | 4.1<br>4.1.1<br>4.2<br>4.3<br>4.4<br>4.5                                                                 | Introduction                                    | 4- ons                                    |
| .10.1<br>Chapte<br>.1<br>.2<br>.3<br>.4                                                                  | Linear System                                                                      | 4.1<br>4.1.1<br>4.2<br>4.3<br>4.4<br>4.5<br>4.5.1                                                        | Introduction                                    | 4                                         |
| .10.1<br>Chapte<br>.1<br>.2<br>.3<br>.4                                                                  | Linear System                                                                      | 4.1<br>4.1.1<br>4.2<br>4.3<br>4.4<br>4.5<br>4.5.1<br>4.6                                                 | Introduction                                    | 4- ons                                    |
| .10.1<br>Chapte<br>.1<br>.2<br>.3<br>.4<br>.5                                                            | Linear System                                                                      | 4.1<br>4.1.1<br>4.2<br>4.3<br>4.4<br>4.5<br>4.5.1<br>4.6<br>4.6.1                                        | Introduction                                    | 4                                         |
| .10.1<br>Chapte<br>.1<br>.2<br>.3<br>.4<br>.5<br>.6                                                      | Linear System                                                                      | 4.1<br>4.1.1<br>4.2<br>4.3<br>4.4<br>4.5<br>4.5.1<br>4.6<br>4.6.1<br>4.7<br>4.7.1                        | Introduction                                    | 4                                         |
| .10.1<br>Chapte<br>.1<br>.2<br>.3<br>.4<br>.5<br>.6<br>.7                                                | Linear System                                                                      | 4.1<br>4.1.1<br>4.2<br>4.3<br>4.4<br>4.5<br>4.5.1<br>4.6<br>4.6.1<br>4.7<br>4.7.1<br>4.8                 | Introduction                                    | 4                                         |
| 10.1<br>1<br>2<br>3<br>4<br>5<br>6<br>7                                                                  | Linear System                                                                      | 4.1<br>4.1.1<br>4.2<br>4.3<br>4.4<br>4.5<br>4.5.1<br>4.6<br>4.6.1<br>4.7<br>4.7.1<br>4.8<br>4.8.1        | Introduction                                    | 4- 2- 2- 2- 2- 2- 2- 2- 2- 2- 2- 2- 2- 2- |
| .10.1<br>Chapte<br>.1<br>.2<br>.3<br>.4<br>.5<br>.6<br>.7<br>.7.1<br>.8                                  | Linear System                                                                      | 4.1<br>4.1.1<br>4.2<br>4.3<br>4.4<br>4.5<br>4.5.1<br>4.6<br>4.6.1<br>4.7<br>4.7.1<br>4.8                 | Introduction                                    | 4- 2- 2- 2- 2- 2- 2- 2- 2- 2- 2- 2- 2- 2- |
| .10.1<br>Chapte<br>.1<br>.2<br>.3<br>.4<br>.5<br>.6<br>.7<br>.7.1<br>.8                                  | Linear System                                                                      | 4.1<br>4.1.1<br>4.2<br>4.3<br>4.4<br>4.5<br>4.5.1<br>4.6<br>4.6.1<br>4.7<br>4.7.1<br>4.8<br>4.8.1<br>4.9 | Introduction                                    | 4                                         |
| .10.1<br>Chapte<br>.1<br>.2<br>.3<br>.4<br>.5<br>.6<br>.7<br>.7.1                                        | Linear System                                                                      | 4.1<br>4.1.1<br>4.2<br>4.3<br>4.4<br>4.5<br>4.5.1<br>4.6<br>4.6.1<br>4.7<br>4.7.1<br>4.8<br>4.8.1        | Introduction                                    | 4                                         |
| .10.1<br>.1<br>.2<br>.3<br>.4<br>.5<br>.6<br>.7<br>.7.1<br>.8<br>.9                                      | Linear System                                                                      | 4.1<br>4.1.1<br>4.2<br>4.3<br>4.4<br>4.5<br>4.5.1<br>4.6<br>4.6.1<br>4.7<br>4.7.1<br>4.8<br>4.8.1<br>4.9 | Introduction                                    | 4- ons                                    |
| .10.1 Chapte .1 .2 .3 .4 .5 .6 .7 .7.1 .8 .9 .10                                                         | Linear System                                                                      | 4.1 4.2 4.3 4.4 4.5 4.5 4.5.1 4.6 4.6.1 4.7 4.7.1 4.8 4.8.1 4.9                                          | Introduction                                    | 4                                         |
| .10.1  Chapte .1 .2 .3 .4 .5 .6 .7 .7.1 .8 .9 .10 .10.1 .10.2 .10.3                                      | Linear System                                                                      | 4.1 4.1.1 4.2 4.3 4.4 4.5 4.5.1 4.6 4.6.1 4.7 4.7.1 4.8 4.8.1 4.9  Chapter 5.1                           | Introduction                                    | 4- ons                                    |
| .10.1  Chapte  .1     .2     .3     .4     .5     .6     .7     .7.1     .8     .9     .10  .10.1  .10.2 | Linear System                                                                      | 4.1 4.1.1 4.2 4.3 4.4 4.5 4.5.1 4.6 4.6.1 4.7 4.7.1 4.8 4.8.1 4.9  Chapte 5.1 5.1.1                      | Introduction                                    | 4                                         |

1

1-10

2.11.2

| 5.3.2    | Effect of Open Loop Transfer Function G(s) H(s) on Steady State Error e <sub>SS</sub> 5-7 |
|----------|-------------------------------------------------------------------------------------------|
| 5.4      | Subjecting a Type 0 System to a Step,                                                     |
|          | Ramp and Parabolic Input5-7                                                               |
| 5.4.1    | Step Input to a Type 0 System5-7                                                          |
| 5.4.2    | Ramp Input to a Type 0 System5-8                                                          |
| 5.4.3    | Parabolic Input to a Type 0 System5-9                                                     |
| 5.5      | Subjecting a Type 1 System to a Step, Ramp and Parabolic Input5-10                        |
| 5.5.1    | Step Input to a Type 1 System5-10                                                         |
| 5.5.2    | Ramp Input to a Type 1 System5-10                                                         |
| 5.5.3    | Parabolic Input to a Type 1 System5-11                                                    |
| 5.6      | Subjecting a Type 2 System to a Step, Ramp and Parabolic                                  |
| 5.0      | Input5-12                                                                                 |
| 5.6.1    | Step Input to a Type 2 System5-12                                                         |
| 5.6.2    | Ramp Input to Type 2 System5-12                                                           |
| 5.6.3    | Parabolic Input to Type 2 System5-13                                                      |
| 5.6.4    | Disadvantages of Static Error Coefficient Method5-14                                      |
| 5.6.5    | Examples on Steady State Response5-14                                                     |
| 5.7      | Transient Response5-19                                                                    |
| 5.7.1    | Analysis of First Order Systems5-19                                                       |
| 5.7.2    | Analysis of Second Order System5-21                                                       |
| 5.7.2(A) | Damping Factor and Natural                                                                |
|          | Frequency of Oscillation5-21                                                              |
| 5.7.2(B) | Natural Frequency of Oscillation ( $\omega_{\rm p}$ )5-22                                 |
| 5.7.2(C) | Position of Poles in a 2nd Order System5-22                                               |
| 5.7.3    | Effect of $\boldsymbol{\xi}$ on the Position of Closed Loop Poles5-22                     |
| 5.7.4    | Unit Step Response of a 2nd Order System5-24                                              |
| 5.7.5    | Time Response of a Second Order                                                           |
|          | System with 0 < $\xi$ < 15-27                                                             |
| 5.7.5(A) | Derivation of Unit Impulse Response of a 2 <sup>nd</sup> Order Underdamped System5-27     |
| 5.7.5(B) | Derivation of Unit Step Response of a 2 <sup>nd</sup> Order                               |
|          | Underdamped System5-28                                                                    |
| 5.8      | Transient Response Specifications5-30                                                     |
| 5.8.1    | Derivation of Rise Time (T <sub>r</sub> )5-31                                             |
| 5.8.2    | Derivation of Peak Time (T <sub>p</sub> )5-32                                             |
| 5.8.3    | Derivation of Peak Overshoot (M <sub>p</sub> )5-33                                        |
| 5.8.4    | Derivation of Settling Time (T <sub>S</sub> )5-34                                         |
| 5.9      | Solved Problems on Transient Response5-34                                                 |
| 5.10     | Sensitivity5-45                                                                           |
|          |                                                                                           |

| Chapter | 6: Stability                           | 6-1 to 6-25 |
|---------|----------------------------------------|-------------|
| 5.1     | Introduction                           | 6-1         |
| 5.1.1   | Stable System                          | 6-1         |
| 5.1.2   | Unstable System                        | 6-1         |
| 5.1.3   | Marginally Stable System               | 6-2         |
| 5.2     | Time Response of Poles                 | 6-2         |
| 5.3     | Hurwitz Stability Criterion            | 6-7         |
| 5.3.1   | Disadvantages of the Hurwitz Criterion | 6-8         |
| 5.4     | Routh Stability Criterion              | 6-8         |
| ô.5     | Routh Criterion Special Cases          | 6-11        |
| 5.5.1   | Special Case 1                         | 6-11        |
| 5.5.2   | Special Case 2                         | 6-13        |
| 5.6     | Relative Stability                     | 6-16        |
| 6.7     | Application of Routh's Criterion       | 6-17        |
| 5.8     | Solved Examples                        | 6-18        |
|         |                                        |             |
|         |                                        |             |

| Chapte | r 7: Root Locus                              | 7-1 to 7-37  |
|--------|----------------------------------------------|--------------|
| 7.1    | Introduction                                 | 7-1          |
| 7.2    | Angle and Magnitude Condition                | 7-2          |
| 7.3    | Construction of Root Locus                   | 7-3          |
| 7.3.1  | General Method for Drawing Root Locus        | 7-3          |
| 7.4    | Determining the Value of k from the Dampir   | ng Ratio7-8  |
| 7.5    | Steps for Solving Problems on Root Locus     | 7-8          |
| 7.6    | Solved Examples                              | 7-9          |
| 7.7    | Some Additional Important Points             | 7-34         |
| 7.7.1  | More Zeros and Less Poles                    | 7-34         |
| 7.7.2  | Value of Gain Margin                         | 7-34         |
| 7.7.3  | Phase Margin from Root Locus                 | 7-34         |
| 7.8    | Effect of Addition of Poles and Zeros on Roc | ot Locus7-34 |
| 7.8.1  | Effect of Addition of Poles                  | 7-34         |
| 7.8.2  | Effect of Addition of Zeros                  | 7-35         |
|        |                                              |              |

| Chapte | r 8 : Frequency Response Analysis 8-1 to 8-15    |
|--------|--------------------------------------------------|
| 8.1    | Introduction8-1                                  |
| 8.2    | Frequency Response8-1                            |
| 8.2.1  | Sinusoidal Response of a Linear System8-1        |
| 8.2.2  | Methods Used in Frequency Response 8-3           |
| 8.2.3  | Advantages of Frequency Response Analysis8-3     |
| 8.2.4  | Time Response and Frequency Response Analysis8-3 |
| 8.2.5  | Disadvantages of Frequency Response Methods8-3   |



| 8.3     | Transfer Function and Frequency Response                            | 8-3         | 9.8       | Summary of Bode Magnitude and                                           |               |
|---------|---------------------------------------------------------------------|-------------|-----------|-------------------------------------------------------------------------|---------------|
| 8.3.1   | Transfer Function and Frequency Response of                         | fa          |           | Phase Plots of Various Terms                                            | 9-14          |
|         | R - C Circuit                                                       | 8-4         | 9.9       | How to Draw Lines of 20, 40, 60 dB/dec?                                 | 9-15          |
| 8.4     | Frequency Response Specifications                                   | 8-5         | 9.10      | Advantages of Bode Plots                                                | 9-17          |
| 8.5     | Co-relation between Time and Frequency Dor                          | main8-6     | 9.11      | Solved Examples                                                         | 9-17          |
| 8.5.1   | Derivation of $\omega_{r}$ and $M_{r}$                              | 8-6         | 9.12      | Other Terms in Bode Plots                                               | 9-48          |
| 8.5.2   | Relationship between Frequency Response                             |             | 9.12.1    | Bode Plot for Transportation Lag                                        | 9-48          |
|         | Specifications and Time Response Specification                      | ons8-7      | 9.13      | All-Pass and Minimum Phase Functions                                    | 9-53          |
| 8.6     | Bandwidth                                                           | 8-8         | 9.14      | Determination of kp, kv, ka from Bode Plo                               | ots9-54       |
| 8.7     | Solved Examples                                                     | 8-9         |           |                                                                         |               |
|         |                                                                     |             | Chapter   | r 10 : Polar and Nyquist Plots                                          | 10-1 to 10-34 |
| Chapter | r 9 : Bode Plots                                                    | 9-1 to 9-55 | 10.1      | Introduction                                                            | 10-1          |
| 9.1     | Introduction                                                        | 9-1         | 10.2      | Polar Plots                                                             | 10-1          |
| 9.2     | Log-Scales                                                          | 9-2         | 10.2.1    | Advantages of Polar Plots                                               |               |
| 9.2.1   | Why Do We Use the Log Scales on the X-axis                          | ?9-2        | 10.2.2    | Polar Plot of a 1 <sup>st</sup> Order Pole $\left(\frac{1}{s+p}\right)$ |               |
| 9.2.2   | What are Log-Scales ?                                               | 9-2         | 10.2.2    | s + p)                                                                  | 10-2          |
| 9.2.3   | Scale Marking                                                       |             | 10.3      | Effect of Adding More Simple Poles                                      | 10-3          |
| 9.3     | Standard Form for GH (jω)                                           | 9-3         | 10.4      | Effect of Adding Pole at Origin                                         | 10-5          |
| 9.4     | Bode Plots of Standard Factors                                      |             | 10.5      | Stability on Polar Plots                                                | 10-10         |
| 9.4.1   | Bode Gain Factor K1                                                 |             | 10.5.1    | A Simple Way to Check Stability on Polar                                | Plots 10-12   |
|         | , <b>k</b>                                                          |             | 10.6      | Nyquist Analysis - Mapping                                              | 10-13         |
| 9.4.2   | Poles at Origin or Integral Factor $\left(\frac{1}{j\omega}\right)$ | 9-4         | 10.7      | Nyquist Stability Criterion                                             | 10-15         |
| 9.4.3   | Zeros at Origin or Derivative Factor $(j_{\omega})^g$               | 9-6         | 10.7.1    | Actual Encirclement                                                     | 10-16         |
| 9.4.4   |                                                                     |             | 10.7.2    | Modified Nyquist Contour                                                | 10-16         |
| J. 1. 1 | First Order Poles $\frac{1}{\left(1+j\frac{\omega}{p_1}\right)}$    |             | 10.7.3    | Advantages of Nyquist Plot                                              | 10-17         |
|         | · · · ·                                                             |             | 10.8      | Relative Stability                                                      | 10-17         |
| 9.4.5   | First Order Zeros $\left(1 + j \frac{\omega}{z_1}\right)$           | 9-8         | 10.9      | Solved Examples                                                         | 10-17         |
| 9.4.6   | Second Order Poles                                                  | 9-8         |           |                                                                         |               |
| 9.4.7   | Second Order Zeros                                                  | 9-10        | Chapter   | r 11 : Compensator Design                                               | 11-1 to 11-34 |
| 9.5     | Frequency Domain Specifications                                     | 9-11        | 11.1      | Introduction                                                            | 11-1          |
| 9.5.1   | Gain Margin (G.M.)                                                  |             | 11.2      | Series Compensation                                                     | 11-2          |
| 9.5.2   | Phase Margin ( $\phi_{pm}$ )                                        | 9-11        | 11.3      | Gain Adjustment                                                         | 11-2          |
| 9.5.3   | Bandwidth                                                           |             | 11.4      | Standard Compensators                                                   | 11-4          |
| 9.5.4   | Cut off Frequency ( $\omega_{\text{C}}$ )                           | 9-12        | 11.5      | Lead Compensator                                                        | 11-4          |
| 9.5.5   | Cut off Rate                                                        | 9-12        | 11.6      | Lag Compensators                                                        | 11-6          |
| 9.5.6   | Resonance Peak Frequency (M <sub>P</sub> )                          | 9-12        | 11.7      | Difference between Phase Lead and                                       |               |
| 9.5.7   | Resonant Frequency $(\omega_p)$                                     | 9-12        |           | Lag Compensation                                                        | 11-7          |
| 9.5.8   | Gain Crossover Frequency $(\omega_{gc})$                            | 9-12        | 11.8      | Lag - Lead Compensator                                                  | 11-7          |
| 9.5.9   | Phase Margin Angle (γ)                                              | 9-12        | 11.9      | Design of Compensators using Bode Plot                                  | 11-8          |
| 9.5.10  | Phase Crossover Frequency (ω <sub>pc</sub> )                        |             | 11.9.1    | Bode Plot of Lead Compensator                                           | 11-8          |
| 9.6     | Relative Stability                                                  |             | 11.9.1(A) | Derivation of Maximum                                                   |               |
| 0.7     | Steps for Solving Rode Plots                                        |             |           | Phase-Lead Frequency ( $\omega_{ m m}$ )                                | 11-9          |



| 11.9.1(B) | Derivation of Maximum Phase Lead Angle ( $\phi_{\rm m}$ )11-9                                  | 13.5.1    | Definition of State and State Variables, State Vectors and State Space | 12_2  |
|-----------|------------------------------------------------------------------------------------------------|-----------|------------------------------------------------------------------------|-------|
| 11.9.2    | Steps to Design Lead Compensator                                                               | 13.6      | State Variable Representation of Control System                        |       |
| 11.9.3    | Design of Lag Compensator using Bode Plot11-17                                                 | 13.6.1    | State Model of Linear Systems                                          |       |
| 11.9.4    | Steps to Design a Lag Compensator                                                              | 13.7      | State Diagram Representation                                           |       |
| 11.9.5    | Bode Plot of Lag-Lead Compensator11-21                                                         | 13.7.1    | Non-uniqueness of the State Variable                                   |       |
| 11.10     | Compensation using Root Locus                                                                  | 13.8      | State Space Representation by                                          | 25    |
| 11.10.1   | Lead Compensator Design using Root Locus                                                       | 13.0      | Specific Types of State Variables                                      | 13-7  |
| 11.10.2   | Designing a Lag Compensator                                                                    | 13.8.1    | Different Representation of State Model                                |       |
| 11.10.2   | using Root Locus11-28                                                                          | 13.8.2    | Forming State Models by Physical Variables                             |       |
| 11.10.3   | Designing Lag-Lead Compensator                                                                 | 13.8.3    | Forming State Model by Phase Variables                                 |       |
|           | using Root Locus11-30                                                                          | 13.8.4    | State Space Representation using                                       |       |
|           |                                                                                                |           | Phase Variable in Observable Controllable Form                         | 13-10 |
| Chanto    | r 12 : Controllers 12-1 to 12-10                                                               | 13.8.5    | Explanation of State Variable Model by                                 |       |
| -         |                                                                                                |           | Phase Variables using Differential Equation                            | 13-11 |
| 12.1      | Introduction to Controllers12-1                                                                | 13.9      | To Obtain Transfer Function from                                       |       |
| 12.2      | Types of Controllers12-1                                                                       |           | State Variable Model and Vice Versa                                    | 13-12 |
| 12.2.1    | ON-OFF Controllers12-1                                                                         | 13.9.1    | To Obtain State Variable Form from                                     |       |
| 12.2.2    | Proportional Controller (P-Controller)12-1                                                     |           | Transfer Function                                                      | 13-15 |
| 12.2.3    | Proportional + Integral Controller                                                             | 13.9.2    | Canonical Form of State Variable Model                                 | 13-16 |
|           | (P-I Controller)12-4                                                                           | 13.10     | Diagonalisation                                                        | 13-18 |
| 12.2.4    | Proportional + Derivative Controller                                                           | 13.10.1   | Eigen Values and Eigen Vectors                                         | 13-18 |
|           | (P-D Controller)12-5                                                                           | 13.10.2   | To Obtain Model Matrix                                                 | 13-18 |
| 12.2.5    | Proportional-Integral-Derivative Controller                                                    | 13.11     | Equivalent State Equations                                             | 13-20 |
| 100       | (P-I-D Controller)                                                                             | 13.12     | Solution of LTI State Equations                                        | 13-20 |
| 12.3      | Effect of Proportional, Integral and Derivative Control on the Time Response of the System12-7 | 13.12.1   | Solution of Homogeneous State Equation                                 | 13-20 |
| 12.4      | Solved Examples                                                                                | 13.12.2   | Properties of State Transition Matrix                                  | 13-21 |
| 12.4      | Solved Examples12-7                                                                            | 13.12.3   | Solution of Non-homogeneous State Equation                             | 13-22 |
|           |                                                                                                | 13.12.4   | Another Way of Solution of LTI State Equations                         | 13-23 |
| Chapter   | r 13 : State Space Analysis 13-1 to 13-31                                                      | 13.12.4(A | s) Solution in Time Domain                                             | 13-23 |
| 13.1      | Introduction13-1                                                                               | 13.12.5   | Properties of State Transition Method                                  | 13-23 |
| 13.2      | Difference between State Space Analysis and                                                    | 13.12.6   | Solution using Laplace Transform                                       | 13-24 |
|           | Transfer Function13-1                                                                          | 13.12.7   | Controllability and Observability                                      | 13-24 |
| 13.3      | Advantages and Disadvantages of                                                                | 13.12.8   | Transformations                                                        |       |
|           | Conventional Control Theory13-1                                                                | 13.12.9   | Transformation to Observable                                           |       |
| 13.4      | Advantages and Disadvantages of                                                                |           | Canonical form CCF                                                     | 13-28 |
|           | Modern Control Theory13-1                                                                      | 13.12.10  | Another way of Computation by                                          |       |
| 13.5      | Concepts of State, State Variables and                                                         |           | Canonical Transformation                                               | 13-29 |
|           | State Model13-2                                                                                |           |                                                                        |       |



